G481 Mechanics

Question			Expected Answers	Marks	Additional Guidance
1	(a)		Correct lines from: - joule (J) to Nm - watt (W) to J s ${ }^{-1}$ - newton (N) to $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$	B2	Note: 2 marks for all correct 1 mark for two correct 0 marks for none or one correct
	(b)	(i)	weight in the range 200 to 1200 (N)	B1	
		(ii)	area in the range 0.01 to $0.08\left(\mathrm{~m}^{2}\right)$	B1	
		(iii)	pressure $=(\mathrm{b})(\mathrm{i}) / \mathrm{b}(\mathrm{ii})$	B1	Allow: 1 sf answer
			Total	5	

Question			Expected Answers	Marks	Additional Guidance
2	(a)		$\begin{aligned} & W=m g \\ & \text { weight }=1.50 \times 9.81=14.72(\mathrm{~N}) \text { or } 14.7(\mathrm{~N}) \text { or } 15(\mathrm{~N}) \end{aligned}$	B1	Allow: Use of $9.8\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ Allow: Bald $15(\mathrm{~N})$; but not ' $1.50 \times 10=15(\mathrm{~N})$ '
	(b)	(i)	Net / resultant force (on B) is less / (net) force (on B) is less than its weight / there is tension (in the string) / there is a vertical / upward / opposing force (on B)	B1	Note: Must have reference to force
		(ii)	$\begin{aligned} & s=u t+\frac{1}{2} a t^{2} \text { and } u=0 \\ & 1.40=\frac{1}{2} \times 1.09 \times t^{2} \\ & t=1.60(\mathrm{~s}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: 2 marks for 1.75/1.09' if answer from (iii) is used Allow: 2 sf answer Allow: 2 marks if $\underline{\mathbf{2 . 8 0} \mathbf{~ m}}$ is used; time $=2.27$ (s)
		(iii)	$\begin{array}{lll} v^{2}=2 \times 1.09 \times 1.40 & / & v=0+1.09 \times 1.60 \\ v=1.75\left(\mathrm{~m} \mathrm{~s}^{-1}\right) & , & v=1.74\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{array}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf Allow: 1.7 or $1.8\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
		(iv)	$\begin{aligned} & \text { change in velocity }=2.47+1.50\left(=3.97 \mathrm{~m} \mathrm{~s}^{-1}\right) \\ & \text { acceleration }=\frac{3.97}{0.030} \\ & \text { acceleration }=132\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	C1 A1	Ignore sign for change in velocity Allow: $130\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ Special case: acceleration $=\frac{2.47-1.50}{0.030}=32.3$ or $32\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ scores 1 mark
			Total	9	

Question			Expected Answers	Marks	Additional Guidance
3	(a)		mass $=\underline{140 \times 3.0}(=420 \mathrm{~kg})$	B1	Allow: $\frac{420}{3.0}=140$ (reverse argument)
	(b)	(i)	$\begin{aligned} & \text { total mass }=500+560+420(=1480 \mathrm{~kg}) \\ & \text { total weight }=1480 \times 9.8(1) / \text { total weight }=14520(\mathrm{~N}) \\ & \text { net force }=1480 \times 1.8 / \quad \text { net force }=2664(\mathrm{~N}) \\ & \text { tension }=14520+2664 \\ & \text { tension }=1.7(2) \times 10^{4}(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 0 \end{aligned}$	Note: Omitting one of the masses - can score maximum of 3 Omitting two masses - can score maximum of 2 Examples: 3 marks if mass of cable is omitted tension $=1908+10400=1.23 \times 10^{4}(\mathrm{~N})$ 2 marks if mass of cable and people are omitted tension $=900+4905=5.8 \times 10^{3}(\mathrm{~N})$ Note: 4 marks for 'tension $=(m(g+a)=) 1480 \times(9.81+1.8)$ '
		(ii)	$\begin{aligned} & \text { stress }=\frac{1.72 \times 10^{4}}{3.8 \times 10^{-4}} \quad, \quad \text { stress }=\frac{(b)(i)}{3.8 \times 10^{-4}} \\ & \text { stress }=4.5(3) \times 10^{7}(\mathrm{~Pa}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf from (i) Note: A tension of $1.7 \times 10^{4}(\mathrm{~N})$ gives an answer of $4.4(7) \times 10^{7}(\mathrm{~Pa})$
			Total	7	

Question			Expected Answers	Marks	Allow: 'Energy cannot be created / destroyed / lost'
5	(a)		Energy cannot be created or destroyed; it can only be transferred/transformed into other forms or The (total) energy of a system remains constant or (total) initial energy = (total) final energy (AW)	B1	
	(b)		Any suitable example of something strained (eg: stretched elastic band)	B1	
	(c)	(i)	$E_{\mathrm{p}}=m g h$ and $E_{\mathrm{k}}=\frac{1}{2} m v^{2} \quad$ (Allow Δh for h)	B1	Not: $E_{\mathrm{k}}=m g h$
		(ii)	$\begin{aligned} & m g h=\frac{1}{2} m v^{2} \\ & v^{2}=2 g h \quad \text { or } \quad v=\sqrt{2 g h} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
	(d)	(i)	$\begin{aligned} & m=\rho V \\ & m=1.0 \times 10^{3} \times\left(1.2 \times 10^{-2} \times 2.0 \times 10^{7}\right) \\ & \text { mass of water }=2.4 \times 10^{8}(\mathrm{~kg}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A0 } \end{aligned}$	Allow any subject for the density equation
		(ii)	$\begin{aligned} & \text { loss in potential energy }=2.4 \times 10^{8} \times 9.81 \times 2.5 \times 10^{3} \\ & 30 \% \text { of } G P E=0.3 \times 5.89 \times 10^{12}\left(=1.77 \times 10^{12}\right) \\ & \text { power }=\frac{1.77 \times 10^{12}}{900} \\ & \text { power }=1.9(63) \times 10^{9}(\mathrm{~W})(\approx 2 \mathrm{GW}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 0 \end{aligned}$	Allow 1 mark for ' $5.89 \times 10^{12}(\mathrm{~J})$ ' Allow 2 marks for ' $1.77 \times 10^{12}(\mathrm{~J})$ ' Note: $\frac{5.89 \times 10^{12}}{900}(=6.5 \mathrm{GW})$ scores 2 marks
		(iii)	Any correct suitable suggestion; eg: the energy supply is not constant/ cannot capture all the rain water / large area (for collection)	B1	Note: Do not allow reference to 'inefficiency' / 'cost'
			Total	11	

Question			Expected Answers	Marks	Additional Guidance
7	(a)	(i)	It has maximum / large / increased stress at this point	B1	Allow: it has 'same force but thinner/smaller area' Not: Thin / small area
		(ii)	The tape has (permanent) extension / deformation when the force / stress is removed (AW)	B1	Note: Need reference to force or stress removed Allow: '.. does not return to original size / shape / length when force / stress is removed'
	(b)		Measurement: \mathscr{A} Diameter Any two from: - original / initial length (Not: final length) - extension / initial and final lengths - weight / mass Equipment: \mathscr{P} Micrometer / vernier (calliper) (for the diameter of the wire) Any two from: - Ruler / (metre) rule / tape measure (for measuring the original length / extension) - Travelling microscope (for measuring extension) - Scales / balance (for measuring the mass \& mg equation is used or for measuring weight) / Newtonmeter (for the weight of hanging masses) / 'known' weights used Determining Young modulus: - stress = force/(cross-sectional) area and strain = extension/original length - Young modulus = stress/strain / Young modulus is equal to the gradient from stress-strain graph (in the linear region)	$\begin{gathered} \mathrm{B} 1 \\ \mathrm{~B} 1 \times 2 \\ \mathrm{~B} 1 \\ \mathrm{~B} 1 \times 2 \\ \\ \\ \hline \text { B1 } \\ \text { B1 } \end{gathered}$	The term diameter to be included and spelled correctly to gain the mark The term micrometer I vernier (calliper) to be included and spelled correctly to the gain mark. (ALLOW: Micrometer is used to measure area / radius / thickness - as BOD) Allow: 'known masses \& $m g$ equation' but not 'known masses' Allow: stress $=F / A$ and strain $=x / L$ Special case for determining Young modulus: Gradient from force-extension graph is $\frac{E A}{L} \quad$ B1 Young modulus $=$ gradient $\times L / A \quad B 1$
			Total	10	

